- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
David Lowenstein (1)
-
Malek Adjouadi (1)
-
Marymossadat Aghili (1)
-
Micheal Adeyosoye (1)
-
Ranjan Duara (1)
-
Rosie E. Curiel Cid (1)
-
Thony Yan Liang (1)
-
Xueting Cui (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Analyzing the hippocampus in the brain through magnetic resonance imaging (MRI) plays a crucial role in diagnosing and making treatment decisions for several neurological diseases. Hippocampus atrophy is among the most informative early diagnostic biomarkers of Alzheimer's disease (AD), yet its automatic segmentation is extremely difficult given the anatomical structure of the brain and the lack of any contrast in between its different regions. The gold standard remains manual segmentation and the use of brain atlases. In this study, we use a well-known image segmentation model, UNet++, and introduce an attention mechanism called the Convolutional Block Attention Module (CBAM) to the UNet++ model. This integrated model improves the feature weights of our region of interest, and hence increases the accuracy in segmenting the hippocampus. Results show averages of 0.8715, 0.8107, 0.8872, and 0.9039 for the metrics of Dice, Jaccard, Precision, and Recall, respectively.more » « less
An official website of the United States government

Full Text Available